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ABSTRACT

While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal
counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For
a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the
lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical.
The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain
and the damping rate, making tidal damping less efficient in larger objects. At higher frequencies, competition
between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same
rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets
and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal
damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what
one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping
rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in
magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their
orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the
mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies.
To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter
ζ which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in
this parameter’s frequency dependence does not influence our principal conclusions.
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1. THE GOAL AND THE PLAN

As the research on exoplanetary systems is gaining momentum, more and more accurate theoretical tools of planetary dynamics
come into demand. Among those tools are the methods of calculation of tidal evolution of both orbital and rotational motion of
planets and their moons. Such calculations involve two kinds of integral parameters of celestial bodies—the Love numbers and the
tidal quality factors. The values of these parameters depend upon the rheology of a body, as well as its size, temperature, and the tidal
frequency.

It has recently become almost conventional in the literature to assume that the tidal quality factor of super-Earths should be of the
order of one hundred to several hundred (Carter et al. 2011; Léger et al. 2009). Although an acceptable estimate for the seismic Q,
this range of numbers turns out to fall short, sometimes by orders of magnitude, of the tidal Q of super-Earths.

In this paper, the frequency dependence of tidal damping in a near-spherical homogeneous body is juxtaposed with the frequency
dependence of damping in a sample of the material in which the body consists. For brevity, damping in a sample will be termed
(somewhat broadly) “seismic damping.”

We shall demonstrate that, while the tidal Q of the solid Earth does not deviate much from the solid-Earth seismic Q, the situation
with larger telluric bodies is considerably different. The difference stems from the presence of self-gravitation, which suppresses
the tidal bulge and thereby acts as extra rigidity—a long-known circumstance often neglected in astronomical studies.1 Due to self-
gravitation (“size effect”), tidal damping in super-Earths is much less efficient than in Earths, and the difference may come to orders
of magnitude, as will be demonstrated below. Thus, while the seismic Q of a super-Earth may be comparable to the seismic Q of the
solid Earth, the tidal Q of a super-Earth may exceed this super-Earth’s seismic Q greatly. This is the reason why it is inappropriate to
approximate super-Earths’ tidal quality factors with that of the solid Earth.

We shall show that the difference between the frequency dependence of the tidal Q factor and that of the seismic Q may explain
the “improper” frequency dependence of the tidal dissipation rate measured by the lunar laser ranging (LLR) method. We also shall
point out that the correct frequency dependence of the tidal dissipation rate, especially at low frequencies, plays an important role
in modeling the process of entrapment into spin–orbit resonances. The latter circumstance will be discussed in greater detail in
Efroimsky (2012).

The rate of the “seismic damping” (a term that we employ to also denote damping in a sample of the material) is defined, at each
frequency, by the material’s rheology only, i.e., by the constitutive equation linking the strain and stress at this frequency. The rate of
the tidal damping, however, is determined both by the rheology and by the intensity of self-gravitation of the body. At a qualitative

1 Including the size effect via kl is common. Unfortunately, it is commonly assumed sufficient. This treatment, however, is inconsistent in that it ignores the
inseparable connection between the Love number and the tidal quality factor (or the tidal phase lag). In reality, both the Love number and the sine of the tidal lag
should be derived from the rheology and geometry of the celestial body, and cannot be adjusted separately from one another.
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level, this can be illustrated by the presence of two terms, 1 and 19μ(∞)/(2ρgR), in the denominator of the expression for the
static Love number k2 of a homogeneous sphere. Here μ(∞) denotes the relaxed shear modulus and g signifies the surface gravity,
while ρ and R stand for the mean density and the radius of the body. The first of these terms, 1, is responsible for the size effect
(self-gravitation), and the second stands for the bulk properties of the medium. Within the applicability realm of an important theorem
called elastic–viscoelastic analogy (also referred to as the correspondence principle), the same expression interconnects the Fourier
component k̄2(χ ) of the time derivative of the Love number with the Fourier component μ̄(χ ) of the stress-relaxation function at
frequency χ . This renders the frequency dependence of the tangent of the tidal lag, which is the negative ratio of the imaginary and
real parts of k̄2(χ ).

This preliminary consideration illustrates the way rheology enters the picture. First, the constitutive equation defines the frequency
dependence of the complex compliance, J̄ (χ ), and of the complex rigidity μ̄(χ ) = 1/J̄ (χ ). The functional form of this dependence
determines the frequency dependence of the complex Love number, k̄l(χ ). The latter furnishes the frequency dependence of the
products |k̄l(χ )| sin εl(χ ) which enter the tidal theory.

In Section 2, we briefly recall the standard description of stress–strain relaxation and dissipation in linear media. In Section 3, we
describe a rheological model, which has proven to be adequate to the experimental data on the mantle minerals and partial melts.
The goal of the subsequent sections will be to build the rheology into the theory of bodily tides, and to compare a tidal response of
a near-spherical body to a seismic response rendered by the medium. Finally, several examples will be provided. Among these will
be the case of the Moon whose “improper” tidal dissipation frequency dependence finds an explanation as soon as the difference
between the seismic and tidal friction is brought to light. In the closing section, we shall compare our results with those obtained by
Goldreich (1963).

The meaning of the symbols used in the text is explained in Table 2 located at the end of the paper.

2. FORMALISM

Everywhere in this paper we shall take into consideration only the deviatoric stresses and strains, thus neglecting compressibility.

2.1. Compliance and Rigidity: The Standard Linear Formalism in the Time Domain

The value of strain in a material depends only on the present and past values taken by the stress and not on the current rate of
change of the stress. Hence the compliance operator Ĵ mapping the stress σγν to the strain uγν must be just an integral operator, linear
at small deformations:

2 uγν(t) = Ĵ (t) σγν =
∫ t

−∞
J (t − t ′)

�
σγν (t ′) dt ′, (1)

where t ′ < t , while overdot denotes d/dt ′. The kernel J (t − t ′) is termed the compliance function or the creep-response function.
Integration by parts renders:

2 uγν(t) = Ĵ (t)σγν = J (0) σγν(t) − J (∞) σγν(−∞) +
∫ t

−∞

�
J (t − t ′)σγν(t ′)dt ′. (2)

As the load in the infinite past may be set zero, the term containing the relaxed compliance J (∞) may be dropped. The unrelaxed
compliance J (0) can be absorbed into the integral if we agree that the elastic contribution enters the compliance function not as

J (t − t ′) = J (0) + viscous and hereditary terms, (3)

but as

J (t − t ′) = J (0) Θ(t − t ′) + viscous and hereditary terms. (4)

The Heaviside step-function Θ(t − t ′) is set unity for t − t ′ � 0, and zero for t − t ′ < 0, so its derivative is the delta-function
δ(t − t ′). Keeping this in mind, we reshape Equation (2) into

2 uγν(t) = Ĵ (t)σγν =
∫ t

−∞

�
J (t − t ′)σγν(t ′) dt ′, with J (t − t ′) containing J (0) Θ(t − t ′). (5)

Inverse to the compliance operator

2 uγν = Ĵ σγ ν (6)

is the rigidity operator

σγν = 2 μ̂uγ ν. (7)

In the presence of viscosity, the operator μ̂ is not integral but is integrodifferential, and thus cannot be expressed as
σγν(t) = 2

∫ t

−∞ μ̇(t − t ′) uγν(t ′) dt ′. It can, though, be written as

σγν(t) = 2
∫ t

−∞
μ(t − t ′) u̇γ ν(t ′) dt ′, (8)

2



The Astrophysical Journal, 746:150 (20pp), 2012 February 20 Efroimsky

if its kernel, the stress-relaxation function μ(t − t ′), is imparted with a term 2 η δ(t − t ′), integration whereof renders the viscous
portion of stress, 2 η u̇γ ν . The kernel also incorporates an unrelaxed part μ(0) Θ(t − t ′) whose integration furnishes the elastic portion
of the stress. The unrelaxed rigidity μ(0) is inverse to the unrelaxed compliance J (0).

Each term in μ(t − t ′), which is neither constant nor proportional to a delta function, is responsible for hereditary reaction.

2.2. In the Frequency Domain

To Fourier-expand a real function, nonnegative frequencies are sufficient. Thus, we write

σγν(t) =
∫ ∞

0
σ̄γ ν(χ )eiχtdχ and uγν(t) =

∫ ∞

0
ūγ ν(χ )eiχtdχ, (9)

where the complex amplitudes are

σ̄γ ν(χ ) = σγν(χ )eiϕσ (χ ), ūγ ν(χ ) = uγν(χ )eiϕu(χ ), (10)

while the initial phases ϕσ (χ ) and ϕu(χ ) are set to render the real amplitudes σγν(χn) and uγν(χn) nonnegative. To ensure convergence,
the frequency is, whenever necessary, assumed to approach the real axis from below: Im(χ ) → 0−.

With the same caveats, the complex compliance J̄ (χ ) is introduced as the Fourier image of the time derivative of the creep-response
function: ∫ ∞

0
J̄ (χ ) eiχτ dχ = �

J (τ ). (11)

The inverse expression,

J̄ (χ ) =
∫ ∞

0

�
J (τ ) e−iχτ dτ, (12)

is often written as

J̄ (χ ) = J (0) + i χ
∫ ∞

0
[J (τ ) − J (0) Θ(τ )] e−iχτ dτ. (13)

For causality reasons, the integration over τ spans the interval [0, ∞] only. Alternatively, we can accept the convention that each term
in the creep-response function is accompanied by the Heaviside step function.

Insertion of the Fourier integrals (9)–(11) into Equation (1) leads us to

2
∫ ∞

0
ūγ ν(χ )e iχtdχ =

∫ ∞

0
σ̄μν(χ )J̄ (χ )e iχtdχ, (14)

whence we obtain

2 ūγ ν(χ ) = J̄ (χ ) σ̄γ ν(χ ). (15)

Expressing the complex compliance as

J̄ (χ ) = |J̄ (χ )| exp[− i δ(χ ) ], (16)

where

tan δ(χ ) ≡ −Im[ J̄ (χ ) ]

Re[ J̄ (χ ) ]
, (17)

we see that δ(χ ) is the phase lag of a strain harmonic mode relative to the appropriate harmonic mode of the stress:

ϕu(χ ) =ϕσ (χ ) − δ(χ ). (18)

2.3. The Quality Factor(s)

In the linear approximation, at each frequency χ the average (per period) energy dissipation rate 〈 �
E (χ )〉 is defined by the

deformation at that frequency only, and bears no dependence upon the other frequencies:

〈Ė(χ )〉=−χEpeak(χ )

Q(χ )
(19)

3
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or, the same:

ΔEcycle(χ ) = −2πEpeak(χ )

Q(χ )
, (20)

ΔEcycle(χ ) being the one-cycle energy loss and Q(χ ) being the quality factor related to the phase lag at the frequency χ . It should
be clarified right away to which of the lags we are linking the quality factor. When we are talking about a sample of material, this
lag is simply δ(χ ) introduced above as the negative argument of the appropriate Fourier component of the complex compliance—see
formulae (17) and (18). However, whenever we address tide, the quality factor becomes linked (via the same formulae) to the tidal
phase lag ε(χ ). Within the same rheological model, the expression for ε(χ ) differs from that for δ(χ ), because the tidal lag depends
not only upon the local properties of the material, but also upon self-gravitation of the body as a whole.

The aforementioned “seismic-or-tidal” ambiguity in the definition of Q becomes curable as soon as one points out to which kind
of deformation the quality factor pertains. More serious is the ambiguity stemming from the freedom in defining Epeak(χ ).

If Epeak(χ ) in Equations (19) and (20) signifies the peak energy stored at frequency χ , the resulting quality factor is related to the
lag via

Q−1
energy = sin |δ| (21)

(not tan |δ| as commonly believed—see the calculation in the Appendix to Efroimsky 2012).
If, however, Epeak(χ ) is introduced as the absolute maximum of work carried out on the sample at frequency χ over a time interval

through which the power stays positive, then the appropriate Q factor is connected to the lag via

Q−1
work = tan |δ|

1 − ((π/2) − |δ|) tan |δ| , (22)

as was shown in Efroimsky (2012).2

The third definition of the quality factor (offered by Goldreich 1963) is

Q−1
Goldreich = tan |δ|. (23)

This definition, though, corresponds neither to the peak work nor to the peak energy.
In the limit of weak lagging, all three definitions entail

Q−1 = |δ| + O(δ2). (24)

For the lag approaching π/2, the quality factor defined as (21) assumes its minimal value, Qenergy = 1, while definition (22) renders
Qwork = 0. The latter is natural, since in the considered limit the work performed on the system is negative, its absolute peak being
zero.3

In seismic studies or in exploration of attenuation in small samples, one’s choice among the three definitions of Q is a matter of
personal taste, for the quality factor is large and the definitions virtually coincide.

In the theory of tides, the situation is different, because at times one has to deal with situations where the definitions of Q disagree
noticeably—this happens when dissipation is intensive and Q is of order unity. To make a choice, recall that the actual quantities
entering the Fourier expansion of tides over the modes ωlmpq are the products4

kl sin εl = kl(ωlmpq ) sin εl(ωlmpq ), (25)

where kl(ωlmpq ) are the dynamical analogs to the Love numbers. It is these products that show up in the lmpq terms of the expansion
for the tidal potential (force, torque). From this point of view, a definition like Equation (21) would be preferable, though this time
with the tidal lag ε instead of the seismic lag δ:

Q−1
l = sin |εl| (26a)

or, in a more detailed manner:

Q−1
l (ωlmpq ) = sin |εl(ωlmpq )|. (26b)

Under this definition, one is free to substitute kl sin εl with kl/Ql . The subscript l accompanying the tidal quality factor will then
serve as a reminder of the distinction between the tidal quality factor and its seismic counterpart.

While the notion of the tidal quality factor has some illustrative power and may be employed for rough estimates, calculations
involving bodily tides should be based not on the knowledge of the quality factor but on the knowledge of the overall frequency
dependence of products kl sin εl = kl(ωlmpq ) sin εl(ωlmpq ). Relying on these functions would spare one the ambiguity in the definition
of Q and would also enable one to take into account the frequency dependence of the dynamical Love numbers.

2 In Efroimsky & Williams (2009), Epeak(χ ) was misnamed “peak energy.” However, the calculation of Q was performed there for Epeak(χ ) introduced as the peak
work.
3 As Q < 2π implies Epeak < ΔE, such small values of Q are unattainable in the case of damped free oscillations. Still, Q can assume such values under excitation,
tides being the case.
4 A historical tradition (originating from Kaula 1964) prescribes to denote the tidal phase lags with εlmpq , while keeping for the dynamical Love numbers the same
notation as for their static predecessors: kl. These conventions are in conflict because the product kl sin εlmpq is the negative imaginary part of the complex Love
number k̄l . More logical is to use the unified notation as in Equation (25). At the same time, it should not be forgotten that for triaxial bodies the functional form of
the dependence of k̄l on frequency is defined not only by l but also by m, p, q. In those situations, one has to deal with klmpq sin εlmpq , see Section 4.
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3. THE ANDRADE MODEL AND ITS REPARAMETERIZATION

In the low-frequency limit, the mantle’s behavior is unlikely to differ much from that of the Maxwell body because over timescales
much longer than 1 yr viscosity dominates (Karato & Spetzler 1990). At the same time, the accumulated geophysical, seismological,
and geodetic observations suggest that at shorter timescales anelasticity takes over and the mantle is described by the Andrade model.
However, the near-Maxwell behavior expected at low frequencies can be fit into the Andrade formalism, as we shall explain below.

3.1. Experimental Data: The Power Scaling Law

Dissipation in solids may be effectively modeled using the empirical scaling law

sin δ = (Eχ )−p, (27)

E being a constant having the dimensions of time. This “constant” may itself bear a (typically, much slower) dependence upon the
frequency χ . The dependence of E on the temperature is given by the Arrhenius law (Karato 2008).

Experiments demonstrate that the power dependence (27) is surprisingly universal, with the exponential p robustly taking values
within the interval from 0.14 to 0.4 (more often, from 0.14 to 0.3).

For the first time, dependence (27) was measured on metals in a lab. This was done by Andrade (1910), who also tried to pick up
an expression for the compliance compatible with this scaling law. Later studies have demonstrated that this law works equally well,
and with similar values of p, both for silicate rocks (Weertman & Weertman 1975; Tan et al. 1997) and ices (Castillo-Rogez et al.
2009; McCarthy et al. 2007).

Independent from the studies of samples in the lab, the scaling behavior (Equation (27)) was obtained via measurements of
dissipation of seismic waves in the Earth (Mitchell 1995; Stachnik et al. 2004; Shito et al. 2004).

The third source of confirmation of the power scaling law came from geodetic experiments that included: (1) satellite laser ranging
(SLR) of tidal variations in the J2 component of the gravity field of the Earth, (2) space-based observations of tidal variations in
Earth’s rotation rate, and (3) space-based measurements of the Chandler wobble period and damping (Benjamin et al. 2006; Eanes &
Bettadpur 1996; Eanes 1995).5

While samples of most minerals furnish values of p lying within the interval 0.15–0.4, the geodetic measurements give 0.14–0.2.
At least a fraction of this difference may be attributed to the presence of partial melt, which is known to have lower values of p
(Fontaine et al. 2005).

On all of these grounds, it is believed that mantles of terrestrial planets are adequately described by the Andrade model, at least in
the higher-frequency band where anelasticity dominates (Gribb & Cooper 1998; Birger 2007; Efroimsky & Lainey 2007; Zharkov &
Gudkova 2009). Some of the other models were considered by Henning et al. (2009).

The Andrade model is equally well applicable to celestial bodies with ice mantles (for application to Iapetus see Castillo-Rogez
et al. 2011) and to bodies with considerable hydration in a silicate mantle.6 The model can also be employed for modeling of the tidal
response of the solid parts of objects with significant liquid-water layers.7

3.2. The Andrade Model in the Time Domain

The compliance function of the Andrade body (Cottrell & Aytekin 1947; Duval 1978),

J (t − t ′) = [J + (t − t ′)αβ + (t − t ′)η−1] Θ(t − t ′), (28)

contains empirical parameters α and β, the steady-state viscosity η, and the unrelaxed compliance J ≡ J (0) = 1/μ(0) = 1/μ. We
endow the right-hand side of Equation (28) with the Heaviside step-function Θ(t − t ′) to ensure that insertion of Equation (28) into
Equation (5), with the subsequent differentiation, yields the elastic term J δ(t − t ′) under the integral. The model allows for description
of dissipation mechanisms over a continuum of frequencies, which is useful for complex materials with a range of grain sizes.

The Andrade model can be thought of as the Maxwell model equipped with an extra term (t − t ′)α β describing hereditary reaction
of strain to stress. The Maxwell model

J (Maxwell)(t − t ′) = [J + (t − t ′)η−1] Θ(t − t ′) (29)

is a simple rheology, which has a long history of application to planetary problems, but generally has too strong a frequency
dependence at higher frequencies where anelasticity becomes more efficient than viscosity (Karato 2008). Insertion of Equation (29)
into Equation (5) renders strain consisting of two separate inputs. The one proportional to J implements the instantaneous (elastic)
reaction, while the one containing η−1 is responsible for the viscous part of the reaction.

Just as the viscous term (t − t ′) η−1 showing up in Equations (28) and (29) is delayed, so is the anelastic term (t − t ′)α β emerging
in the Andrade model (28)—both terms reflect how the past stressing is influencing the present deformation. At the same time, the
anelastic reaction differs from viscosity both mathematically and physically because it is produced by different physical mechanisms.

5 It should be noted that in reality the geodetic measurements were confirming the power law (27) not for the seismic lag δ but for the tidal lag ε, an important detail
to be addressed shortly.
6 Damping mechanisms in a wet planet will be the same as in a dry one, except that their efficiency will be increased. Hence, the dissipation rate will have a similar
frequency dependence but higher magnitude.
7 In the absence of internal oceans, a rough estimate of the tidal response can be obtained through modeling the body with a homogeneous sphere. However, the
presence of such oceans makes it absolutely necessary to calculate the overall response through integration over the solid and liquid layers. As demonstrated by Tyler
(2009), tidal dissipation in internal ocean layers can play a big role in rotational dynamics of the body.

5
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A disadvantage of the formulation (28) of the Andrade model is that it contains a parameter of fractional dimensions, β. To avoid
fractional dimensions, we shall express this parameter, following Efroimsky (2012), as

β = Jτ−α
A = μ−1 τ−α

A , (30a)

the new parameter τA having dimensions of time. This is the timescale associated with the Andrade creep, wherefore it may be named
as the “Andrade time” or the “anelastic time.”

Another option is to express β as

β = ζ−α J τ−α
M = ζ−α μ−1 τ−α

M , (30b)

where the dimensionless parameter ζ is related through

ζ = τA

τM

(31)

to the anelastic timescale τA and to the Maxwell time

τM ≡ η

μ
= η J. (32)

In terms of the so-introduced parameters, the compliance assumes the form of

J (t − t ′) = J

[
1 +

(
t − t ′

τA

)α

+
t − t ′

τM

]
Θ(t − t ′) (33a)

= J

[
1 +

(
t − t ′

ζ τM

)α

+
t − t ′

τM

]
Θ(t − t ′). (33b)

For τA 	 τM (or, equivalently, for ζ 	 1), anelasticity plays a more important role than viscosity. On the other hand, a large τA

(or large ζ ) would imply suppression of anelasticity, compared to viscosity.
It has been demonstrated by Castillo-Rogez that under low stressing (i.e., when the grain-boundary diffusion is the dominant

damping mechanism—like in Iapetus) β obeys the relation

β ≈ Jτ−α
M = J 1−α η−α = μα−1 η−α (34a)

(see, e.g., Castillo-Rogez et al. 2011). Comparing this to Equation (30), we can say that the anelastic and viscoelastic timescales are
close to one another:

τA ≈ τM (34b)

or, equivalently, that the dimensionless parameter ζ is close to unity:

ζ ≈ 1. (34c)

Generally, we have no reason to expect the anelastic and viscoelastic timescales to coincide, or even to be comparable under all
possible circumstances. While Equation (34) may work when the grain-boundary diffusion dominates anelastic friction, we are also
aware of a case when the timescales τA and τM differ considerably. This is a situation when stressing is stronger, and the anelastic
part of dissipation is dominated by dislocations unpinning. This is what happens in mantles of Earths and super-Earths.

On theoretical grounds, Karato & Spetzler (1990) point out that the dislocation–unpinning mechanism remains effective in Earth’s
mantle down to the frequency threshold χ0 ∼ 1yr−1. At lower frequencies, this mechanism becomes less efficient, giving way to
viscosity. Thus, at low frequencies, the mantle’s behavior becomes closer to that of the Maxwell body.8 This important example tells
us that the anelastic time τA and the dimensionless parameter ζ may, at times, be more sensitive to the frequency than the Maxwell
time would be. Whether τA and ζ demonstrate this sensitivity or not may, in its turn, depend upon the intensity of loading, i.e., upon
the damping mechanisms involved.

3.3. The Andrade Model in the Frequency Domain

Through Equation (12), it can be demonstrated (Findley et al. 1976) that in the frequency domain the compliance of an Andrade
material reads as

J̄ (χ ) = J + β (iχ )−α Γ (1 + α) − i

ηχ
(35a)

8 Using the Andrade model as a fit to the experimentally observed scaling law (27), we see that the exponential p coincides with the Andrade parameter α < 1 at
frequencies above the said threshold, and that p becomes closer to unity below the threshold—see Section 3.4 below.
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= J [1 + (i χ τA)−α Γ (1 + α) − i(χ τM )−1], (35b)

= J [1 + (i χ ζ τM )−α Γ (1 + α) − i(χ τM )−1], (35c)

χ being the frequency and Γ denoting the gamma function. The imaginary and real parts of the complex compliance are

Im[J̄ (χ )] = − 1

η χ
− χ−α β sin

(α π

2

)
Γ(α + 1) (36a)

= −J (χ τM )−1 − J (χ τA)−α sin
(α π

2

)
Γ(α + 1) (36b)

= −J (χ τM )−1 − J (χ ζ τM )−α sin
(α π

2

)
Γ(α + 1) (36c)

and

Re[J̄ (χ )] = J + χ−α β cos
(α π

2

)
Γ(α + 1) (37a)

= J + J (χτA)−α cos
(α π

2

)
Γ(α + 1) (37b)

= J + J (χ ζ τM )−α cos
(α π

2

)
Γ(α + 1). (37c)

The ensuing frequency dependence of the phase lag will be9

tan δ(χ ) = − Im[J̄ (χ )]

Re[J̄ (χ )]
= (η χ )−1 + χ −α β sin[(απ )/2] Γ(α + 1)

μ−1 + χ −α β cos[(απ)/2] Γ(α + 1)
(38a)

= [(1/χτM ) + (1/χτA)α] [Γ(α + 1) sin(απ/2)]

[1 + (1/χτA)α] [Γ(α + 1) cos(απ/2)]
= z−1 ζ + z−α sin(απ/2) Γ (α + 1)

1 + z−α cos(απ/2) Γ (α + 1)
, (38b)

with z being the dimensionless frequency defined through

z ≡ χτA = χτMζ. (39)

Evidently, for β → 0 (that is, for ζ → ∞ or τA → ∞), expression (38) approaches

tan δ(χ ) = (τM χ )−1 , (40)

which is the frequency dependence appropriate to the Maxwell body.

3.4. Low Frequencies: From Andrade toward Maxwell

The Andrade body demonstrates the so-called elbow dependence of the dissipation rate upon frequency. At high frequencies, the
lag δ satisfies the power law

tan δ ∼ χ−p, (41)

the exponential being expressed via an empirical parameter α, where 0 < α < 1 for most materials. It follows from Equation (38)
that at higher frequencies p = α, while at low frequencies p = 1 − α.

The statement by Karato & Spetzler (1990), that the mantle’s behavior at low frequencies should lean toward that of the Maxwell
body, can be fit into the Andrade formalism if we agree that at low frequencies either α approaches zero (so p approaches unity) or ζ
becomes large (so τA becomes much larger than τM ). The latter option is more physical because the increase of τA would reflect the
slowing down of the unpinning mechanism studied in Karato & Spetzler (1990).

One way or another, the so-parameterized Andrade model is fit to embrace the result from Karato & Spetzler (1990). Hence,
our treatment will permit us to describe both the high-frequency range where the traditional Andrade model is applicable, and the
low-frequency band where the behavior of the mantle deviates from the Andrade model toward the Maxwell body. Comparison of
the two models in the frequency domain is presented in Figure 1.

9 In some publications (e.g., Nimmo 2008), formula (38a) is given as an expression for the inverse quality factor. This is legitimate when the latter is defined
through Equation (23).
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Figure 1. Andrade and Maxwell models in the frequency domain. The plot shows the decadic logarithm of tan δ, as a function of the decadic logarithm of the forcing
frequency χ (in cycles s−1). For the Andrade body, the tangent of phase lag is given by Equation (38b), with α = 0.2 and τA = τM = 1010 s. For the Maxwell body,
the tangent is rendered by Equation (40), with τM = 1010 s.

4. EXPANDING A TIDAL POTENTIAL OR TORQUE—OVER THE TIDAL MODES OR OVER
THE FORCING FREQUENCIES?

Consider a binary system with mean motion n, and suppose that tidal dissipation in one of the bodies much exceeds that in its
companion. Then the former body may be treated as the tidally perturbed primary, the latter being its tide-raising secondary. The

sidereal angle and the spin rate of the primary will be expressed with θ and
�
θ , while the node, pericenter, and mean anomaly of the

secondary, as seen from the primary,10 will be denoted by Ω, ω, and M.
In the Darwin–Kaula theory, bodily tides are expanded over the modes

ωlmpq ≡ (l − 2p) ω̇ + (l − 2p + q) Ṁ+ m (Ω̇ − θ̇) ≈ (l − 2p + q) n− m θ̇, (42)

with l, m, p, q being integers. Dependent upon the values of the mean motion, spin rate, and the indices, the tidal modes ωlmpq may
be positive or negative or zero.

In the expansion of the tidal potential or torque or force, summation over the integer indices goes as
∑∞

l=2

∑l
m=0

∑∞
p=0

∑∞
q = − ∞ .

For example, the secular polar component of the tidal torque will read as

T =
∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q = − ∞

· · · kl(ωlmpq ) sin εl(ωlmpq ), (43)

where the ellipsis denotes a function of the primary’s radius and the secondary’s orbital elements. The functions kl(ωlmpq ) are the
dynamical analogs of the static Love numbers, while the phase lags corresponding to the tidal modes ωlmpq are given by

εl(ωlmpq ) = ωlmpqΔtl(|ωlmpq |) = |ωlmpq |Δtl(|ωlmpq |)sgn ωlmpq = χlmpqΔtl(χlmpq ) sgn ωlmpq. (44)

Here the positively defined quantities

χlmpq ≡ |ωlmpq | (45)

are the forcing frequencies in the material, while the positively defined time lags Δtlmpq are their functions.
Following Kaula (1964), the phase and time lags are often denoted with εlmpq and Δtlmpq . For near-spherical bodies, though, the

notations εl(χlmpq) and Δtl(χlmpq) would be preferable, because for such bodies the functional form of the dependency εlmpq (χ ) is
defined by l s, but is ignorant of the values of the other three indices.11 The same therefore applies to the time lag.

10 When the role of the primary is played by a planet and the role of the perturbing secondary is played by the host star, the argument of the pericenter of the star as
seen from the planet, ω, differs by π from the argument of the pericenter of the planet as seen from the star. Also note that in Equation (42) the letter ω with the
subscript lmpq denotes, as ever, a tidal mode, while the same letter without a subscript stands for the periapse. The latter use of this letter in Equation (42) is
exceptional, in that elsewhere in the paper the letter ω, with or without a subscript, always denotes a tidal mode.
11 Within the applicability realm of the elastic–viscoelastic analogy employed in Section 5.2 below, the functional form of the complex Love number k̄l(χ ) of a
near-spherical object is determined by index l solely, while the integers m, p, q show up through the value of the frequency: k̄l(χ ) = k̄l(χlmpq ). This applies to the lag
too, since the latter is related to k̄l via Equation (62).

For triaxial bodies, the functional forms of the frequency dependencies of the Love numbers and phase lags do depend upon m, p, q because of coupling between
spherical harmonics. In those situations, notations k̄lmpq and εlmpq become necessary (Dehant 1987a, 1987b; Smith 1974). The Love numbers of a slightly
non-spherical primary differ from the Love numbers of the spherical reference body by a term of the order of the flattening, so a small non-sphericity can usually be
ignored.
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The forcing frequencies in the material of the primary, χlmpq , are positively defined. While the general formula for a Fourier
expansion of a field includes integration (or summation) over both positive and negative frequencies, it is easy to demonstrate that
in the case of real fields it is sufficient to expand over positive frequencies only. The condition of the field being real requires that
the real part of a Fourier term at a negative frequency is equal to the real part of the term at an opposite, positive frequency. Hence,
one can get rid of the terms with negative frequencies at the cost of doubling the appropriate terms with positive frequencies. (The
convention is that the field is the real part of a complex expression.)

The tidal theory is a rare exception to this rule: here, a contribution of a Fourier mode into the potential is not completely equivalent
to the contribution of the mode of an opposite sign. The reason for this is that the tidal theory is developed to render expressions
for tidal forces and torques, and the sign of the tidal mode ωlmpq shows up explicitly in those expressions. This happens because the
phase lag in Equation (43) is the product (44) of the tidal mode ωlmpq and the positively defined time lag Δtlmpq .

This way, if we choose to expand tide over the positively defined frequencies χ only, we shall have to insert “by hand” the
multipliers

sgn ωlmpq = sgn[(l − 2p + q) n − m θ̇] (46)

into the expressions for the tidal torque and force, a result to be employed below in formula (65). The topic is explained in greater
detail in Efroimsky (2012).

5. COMPLEX LOVE NUMBERS AND THE ELASTIC–VISCOELASTIC ANALOGY

Let us recall briefly the switch from the stationary Love numbers to their dynamical counterparts, the Love operators. The method
was probably pioneered by Zahn (1966) who applied it to a purely viscous planet. The method works likewise for an arbitrary linear
rheological model insofar as the elastic–viscoelastic analogy (also referred to as the correspondence principle) remains in force.

5.1. From the Love Numbers to the Love Operators

A homogeneous near-spherical incompressible primary alters its shape and potential when influenced by a static point-like
secondary. At a point �R = (R, λ, φ), the potential due to a tide-generating secondary of mass M∗

sec, located at �r ∗ = (r∗, λ∗, φ∗) with
r∗ � R, can be expressed through the Legendre polynomials Pl(cos γ ) or the Legendre functions Plm(sin φ):

W (R , r ∗) =
∞∑

l=2

Wl(R , r ∗) = −GM∗
sec

r ∗

∞∑
l=2

(
R

r∗

)l

Pl(cos γ )

= −GM∗
sec

r∗

∞∑
l=2

(
R

r∗

)l l∑
m=0

(l − m)!

(l + m)!
(2 − δ0m)Plm(sin φ)Plm(sin φ∗) cos m(λ − λ∗), (47)

G being Newton’s gravitational constant and γ being the angle between the vectors r ∗ and R originating from the primary’s center.
The latitudes φ, φ∗ are reckoned from the primary’s equator, while the longitudes λ, λ∗ are reckoned from a fixed meridian on the
primary.

The lth spherical harmonic Ul(r) of the resulting change of the primary’s potential at an exterior point r is connected to the lth
spherical harmonic Wl(R , r ∗) of the perturbing exterior potential via Ul(r) = (R/r)l+1kl Wl(R , r ∗), so the total change in the
exterior potential of the primary becomes

U (r) =
∞∑

l=2

Ul(r) =
∞∑

l=2

(
R

r

)l+1

kl Wl(R, r ∗). (48)

While in Equation (47) R could lie either outside or on the surface of the primary, in Equation (48) it would be both convenient and
conventional to make R a surface point. In both Equations (47) and (48), the vector r denotes an exterior point located above the
surface point R at a radius r � R (with the same latitude and longitude), while r ∗ signifies the position of the tide-raising secondary.
The quantities kl are the static Love numbers.

Under dynamical stressing, the Love numbers turn into operators:

Ul(r, t) =
(

R

r

)l+1

k̂l(t) Wl(R, r ∗, t ′), (49)

where integration over the semi-interval t ′ ∈ [−∞, t] is implied:

Ul(r, t) =
(

R

r

)l+1 ∫ t ′=t

t ′=−∞
kl(t − t ′)

�
W l (R, r ∗, t ′) dt ′ (50a)

=
(

R

r

)l+1

[kl(0)W (t) − kl(∞)W (−∞)] +

(
R

r

)l+1 ∫ t

−∞
k̇l(t − t ′) Wl(R, r ∗, t ′) dt ′. (50b)
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Like in the compliance operator ((1) and (2)), here we also obtain the boundary terms: one corresponding to the instantaneous elastic
reaction, kl(0)W (t), and another caused by the perturbation in the infinite past, −kl(∞)W (−∞). The latter term can be dropped by
setting W (−∞) zero, while the former term may be included into the kernel in the same manner as in Equations (3)–(5):

(
R

r

)l+1

kl(0)W (t) +

(
R

r

)l+1∫ t

−∞
k̇l(t − t ′) Wl(R, r ∗, t ′) dt ′ =

(
R

r

)l+1∫ t

−∞

d

dt
[kl(t − t ′) − kl(0) + kl(0)Θ(t − t ′)]Wl(R, r ∗, t ′) dt ′.

(50c)

All in all, neglecting the unphysical term with W (−∞), and inserting the elastic term into the Love number, not as kl(0) but as
kl(0) Θ(t − t ′), we arrive at

Ul(r, t) =
(

R

r

)l+1 ∫ t

−∞
k̇l(t − t ′)Wl(R, r∗, t ′) dt ′, (51)

with kl(t − t ′) now incorporating the elastic reaction as kl(0) Θ(t − t ′) instead of kl(0). For a perfectly elastic primary, the elastic
reaction would be the only term present in the expression for kl(t − t ′). Then the time derivative of kl would be k̇l(t − t ′) = kl δ(t − t ′),
with kl ≡ kl(0) being the static Love number, and Equation (51) would reduce to Ul(r, t) = (R/r)l+1kl Wl(R, r∗, t), as in the static
case.

Similar to Equation (11), the complex Love numbers are defined as the Fourier images of
�
kl (τ ):∫ ∞

0
k̄l(χ )eiχτ dχ = �

kl (τ ), (52)

overdot denoting d/dτ . Following Churkin (1998), the time derivatives
�
k l (t) can be called Love functions.12 Inversion of Equation (52)

renders:

k̄l(χ ) =
∫ ∞

0
k̇l(τ ) e−iχτ dτ = kl(0) + iχ

∫ ∞

0
[ kl(τ ) − kl(0) Θ(τ ) ] e−iχτ dτ, (53)

where integration from 0 is sufficient, as the future disturbance contributes nothing to the present distortion, wherefore kl(τ ) vanishes
at τ < 0. Recall that the time τ denotes the difference t − t ′ and thus is reckoned from the present moment t backward into the past.

In the frequency domain, Equation (50) will take the shape of

Ūl(χ ) =
(

R

r

)l+1

k̄l(χ )W̄l(χ ), (54)

with χ being the frequency, while Ūl(χ ) and W̄l(χ ) are the Fourier or Laplace components of the potentials Ul(t) and Wl(t). The
frequency dependencies k̄l(χ ) should be derived from the expression for J̄ (χ ) or μ̄(χ ) = 1/J̄ (χ ). These expressions follow from the
rheological model of the medium.

Rigorously speaking, we ought to assume in expressions (52)–(54) that the spectral components are functions of the tidal mode
ω and not of the forcing frequency χ . However, as explained in the end of Section 4, employment of the positively defined forcing
frequencies is legitimate, insofar as we do not forget to attach the sign multipliers (46) to the terms of the Darwin–Kaula expansion
for the tidal torque. Therefore, here and hereafter we shall expand over χ , with the said caveat kept in mind.

5.2. Complex Love Numbers as Functions of the Complex Compliance: The Elastic–Viscoelastic Analogy

The dependence of the static Love numbers on the static rigidity modulus μ(∞) is

k
(static)
l = 3

2 (l − 1)

1

1 + A
(static)
l

, (55)

where

A
(static)
l ≡ (2 l2 + 4 l + 3)

l g ρ R
μ(∞) = 3 (2 l2 + 4 l + 3)

4 l π Gρ2 R2
μ(∞) = 3 (2 l2 + 4 l + 3)

4 l π Gρ2 R2 J (∞)
, (56)

with ρ, g, and R being the density, surface gravity, and radius of the body, and G being the Newton gravitational constant. The static
rigidity modulus and its inverse, the static compliance, are denoted here with μ(∞) and J (∞), respectively. These notations imply
that we identify static with relaxed.

12 Churkin (1998) used functions, which he denoted kl(t) and which were, due to a difference in notations, the same as our
�
kl (τ ).
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Specifically, the static quadrupole Love number will read

k
(static)
2 = 3

2

1

1 + A
(static)
2

, (57)

where the quantity

A
(static)
2 = 57

8 π

μ(∞)

Gρ2 R2
(58)

is sometimes referred to as μ̃. Clearly, A
(static)
2 in Equation (57), as well as A

(static)
l in Equation (55), is a dimensionless measure of

strength-dominated versus gravity-dominated behavior.
It is not immediately clear whether the same expression also interconnects k̄l(χ ) with μ̄(χ ). Fortunately, though, a wonderful

theorem called elastic–viscoelastic analogy, also known as the correspondence principle, ensures that the viscoelastic operational
moduli μ̄(χ ) or J̄ (χ ) obey the same algebraic relations as the elastic parameters μ or J (see, e.g., Efroimsky 2012 and references
therein). For this reason, the Fourier or Laplace images of the viscoelastic equation of motion13 and of the constitutive equation look
similar to their static counterparts, except that the stress, strain, and potentials are replaced with their Fourier or Laplace images,
while kl, μ, and J are replaced with the Fourier or Laplace images of

�
kl (t − t ′),

�
μ (t − t ′), and

�
J (t − t ′). For example, the constitutive

equation will look like σ̄γ ν = 2μ̄ūγ ν . Therefore the solution to the problem will retain the mathematical form of Ūl = k̄l W̄l , with
k̄l keeping the same functional dependence on ρ, R, and μ̄ (or J̄ ) as in Equation (56), except that now μ and J are equipped with
overbars:

k̄l(χ ) = 3

2 (l − 1)

1

1 + Al μ̄(χ )/μ
(59a)

= 3

2 (l − 1)

1

1 + Al J/J̄ (χ )
= 3

2 (l − 1)

J̄ (χ )

J̄ (χ ) + Al J
, (59b)

where

Al ≡ (2 l2 + 4 l + 3) μ

l g ρ R
= 3 (2 l2 + 4 l + 3) μ

4 l π Gρ2 R2
= 3(2 l2 + 4 l + 3) J−1

4 l π Gρ2 R2
, (60)

Although expression (60) for factors Al is very similar to expression (56) for their static counterparts, an important difference
between (56) and (60) should be pointed out. While in Equation (56) we had the static (relaxed) rigidity and compliance, μ(∞) and
J (∞) = 1/μ(∞), in Equation (60) the letters μ and J may stand for any benchmark values satisfying J = 1/μ. This freedom stems
from the fact that the products Al J entering Equation (59b) bear no dependence upon J or μ. The second term in the denominator
of Equation (59a) contains μ̄. For convenience, we multiply and then divide μ̄ by some μ, and make the multiplier μ a part of Al as
in Equation (60). This makes it easier for us to compare (60) with its static predecessor (56). However, the constant μ in Equations
(59) and (60) is essentially arbitrary and is not obliged to coincide with, say, the unrelaxed or relaxed rigidity. Accordingly, J = 1/μ
is not obliged to be the unrelaxed or relaxed compliance.

The above caveat is important because in certain rheological models some of the unrelaxed or relaxed moduli may be zero or
infinite. This will happen, for example, if we start with the Maxwell or Kelvin–Voigt body and perform a transition to a purely viscous
medium. Fortunately, in realistic rheologies such things do not happen. Hence it will be convenient (and possible) to identify the
J from Equation (60) with the unrelaxed compliance J = J (0) emerging in the rheological model (33). Accordingly, the rigidity
μ = 1/J from Equation (60) will be identified with the unrelaxed rigidity μ(0) = 1/J (0). This convention will play a crucial role
down the road, when we derive formula (63).

Writing the lth complex Love number as

k̄l(χ ) =Re[k̄l(χ )] + i Im[k̄l(χ )] = |k̄l(χ )| e−iεl(χ ), (61)

we express the phase lag εl(χ ) as

|k̄l(χ )| sin εl(χ ) = − Im[k̄l(χ )]. (62)

The importance of the products |k̄l(χ )| sin εl(χ ) lies in the fact that they show up in the terms of the Darwin–Kaula expansion of
the tidal potential. As a result, it is these products, and not kl/Q as some think, that emerge in the expansions for tidal forces and
torques, and for the dissipation rate.

In an attempt to preserve the popular notation kl/Q, one may define the inverse quality factor as the sine of the lag—see the
discussion in Section 2.3. In this case, though, one would have to employ the tidal lag εl , and not the lag δ in the material (which we
call the “seismic” lag). Accordingly, one will have to write not kl/Q but kl/Ql where 1/Ql ≡ sin εl .

13 In the equation of motion, we should neglect the acceleration term and the nonconservative inertial forces. Both omissions are justified at realistic frequencies (for
details, see the Appendix to Efroimsky 2012).
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Importantly, the functional form of the frequency dependence sin εl(χ ) is different for different l. Thus an attempt to name
sin εl as 1/Q would give birth to a whole array of different functions Ql(χ ). For a triaxial body, things will become even more
complicated—see footnote 11. To conclude, it is not advisable to denote sin εl with 1/Q.

It should be mentioned that the Darwin–Kaula theory of tides is equally applicable to tides in despinning and librating bodies. In
all cases, the phase angle εl = εl(χlmpq ) parameterizes the lag of the appropriate component of the bulge, while the absolute value of
the complex Love number |k̄l| = | k̄l(χlmpq ) | determines the magnitude of this component. The overall bulge being a superposition of
these components, its height may vary in time.

5.3. The Tangent of the Tidal Lag

In the denominator of Equation (59a) the term 1 emerges due to self-gravitation, while Al J/J̄ (χ ) = Al |μ̄(χ )|/μ describes how the
bulk properties of the medium contribute to deformation and damping. So for a vanishing Al J/|J̄ (χ )| we end up with the hydrostatic
Love numbers kl = 3/(2 (l − 1)), while the lag becomes nil, as will be seen shortly from Equation (64). On the contrary, for very large
Al J/J̄ (χ ), we expect to obtain the Love numbers and lags ignorant of the shape of the body.

To see how this works out, combine formulae (35) and (59b), to arrive at

tan εl = −Im[k̄l(χ )]

Re[k̄l(χ )]
= − AlJ Im[J̄ (χ )]

{Re[J̄ (χ )]}2 + {Im[J̄ (χ )]}2 + AlJRe[J̄ (χ )]
(63a)

= Al

[
ζz−1 + z−α sin(α π/2) Γ(1 + α)

]
[1 + z−α cos(απ/2) Γ(1 + α)]2 +

[
ζz−1 + z−α sin(απ/2) Γ(1 + α)

]2
+ Al [1 + z−α cos(απ/2) Γ(1 + α)]

, (63b)

with z being the dimensionless frequency defined by Equation (39).
Comparing this expression with expression (38) over different frequency bands, we shall be able to explore how the tidal lag εl

relates to the lag in the material δ (the “seismic lag”).
While expression (63b) is written for the Andrade model, the preceeding formula (63a) is general and works for an arbitrary linear

rheology.

5.4. The Negative Imaginary Part of the Complex Love Number

As we already mentioned above, rheology influences the tidal behavior of a planet through the following sequence of steps. A
rheological model postulates the form of J̄ (χ ). This function, in its turn, determines the form of k̄l(χ ), while the latter defines the
frequency dependence of the products |k̄l(χ )| sin ε(χ ) which enter the tidal expansions.

To implement this concatenation, one has to express |k̄l(χ )| sin ε(χ ) via J̄ (χ ). This can be done by combining Equation (59) with
Equation (62). It renders

|k̄l(χ )| sin εl(χ ) = −Im[k̄l(χ )] = 3

2 (l − 1)

−AlJIm[J̄ (χ )]

(Re[J̄ (χ )] + AlJ )2 + (Im[J̄ (χ )])2
, (64)

a quantity often misnoted14 as kl/Q. Together, formulae (35) and (64) give us the frequency dependencies for the factors |k̄l(χ )| sin εl(χ )
entering the theory of bodily tides. For a detailed derivation of those dependencies, see Efroimsky (2012).

As explained in Section 4, employment of expressions (62)–(64) needs some care. Since both Ū and k̄l are in fact functions not of
the forcing frequency χ but of the tidal mode ω, formulae (62)–(64) should be equipped with multipliers sgn ωlmpq , when plugged
into the expression for the lmpq component of the tidal torque. With this important caveat in mind, and with the subscripts lmpq
reinstalled, the complete expression will read:

|k̄l(χlmpq )| sin εl(χlmpq ) = 3

2 (l − 1)

−AlJIm[J̄ (χlmpq )]

(Re[J̄ (χlmpq)] + Al J )2 + (Im[J̄ (χlmpq)])2
sgn ωlmpq, (65)

a general formula valid for an arbitrary linear rheological model.
To make use of this and other formulae, it would be instructive to estimate the values of Al for terrestrial objects of different size.

In Table 1, we present estimates of A2 for Iapetus, Mars, solid Earth, a hypothetical solid super-Earth having a density and rigidity of
the solid Earth and a radius equal to 2 terrestrial radii (R = 2 R⊕), and also a hypothetical super-Earth two times larger (R = 4 R⊕)
of the same rheology.

Taken the uncertainty of structure and the roughness of our estimate, all quantities in the table have been rounded to the first decimal.
The values of Iapetus’ and Mars’ rigidity were borrowed from Castillo-Rogez et al. (2011) and Johnson et al. (2000), respectively.

In Figure 2, we compare the behavior of k2 sin ε2 = |k̄2(χ )| sin ε2(χ ) for the values of A2 appropriate to Iapetus, Mars, solid Earth,
and hypothetical super-Earths with R = 2 R⊕ and R = 4 R⊕, as given in Table 1. Self-gravitation pulls the tides down, mitigating
their magnitude and the value of the tidal torque. Hence, the heavier the body, the lower the appropriate curve. This rule is observed
well at low frequencies (the viscosity-dominated range). In the intermediate zone and in the high-frequency band (where anelasticity
dominates friction), this rule starts working only for bodies larger than about twice Earth’s size. If we fix the tidal frequency at a
sufficiently high value, we shall see that the increase of the size from that of Iapetus to that of Mars and further to that of Earth results
in an increase of the intensity of the tidal interaction. For an R = 2 R⊕ super-Earth, the tidal factor k2 sin ε2 is about the same as that
for the solid Earth, and begins to decrease for larger radii (so the green curve for the larger super-Earth is located fully below the cyan
curve for a smaller super-Earth).

14 One can write the left-hand side of Equation (64) as kl/Q only if the quality factor is defined through Equation (26) and endowed with the subscript l.
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Figure 2. Negative imaginary part of the complex quadrupole Love number, k2 sin ε2 = − Im[k̄2(χ )], as a function of the tidal frequency χ . The black, red, and
blue curves refer, respectively, to Iapetus, Mars, and the solid Earth. The cyan and green curves refer to the two hypothetical superearths described in Table 1. These
superearths have the same rheology as the solid Earth but have sizes R = 2 R⊕ and R = 4 R⊕. Each of these five objects is modeled with a homogeneous near-spherical
self-gravitating Andrade body with α = 0.2 and τA = τM = 1010 s. In the limit of vanishing tidal frequency χ , the factors k2 sin ε2 approach zero, which is natural
from the physical point of view. Indeed, an lmpq term in the expansion for tidal torque contains the factor kl(χlmpq

) sin εl (χlmpq
). On crossing the lmpq resonance,

where the frequency χ
lmpq

goes through zero, the factor kl(χlmpq
) sin εl (χlmpq

) must vanish, so that the lmpq term of the torque could change its sign.

Table 1
Estimates of A

(static)
2 for Rigid Celestial Bodies

Radius Mean Density Mean Relaxed The Resulting
(R) (ρ) Shear Rigidity (μ(∞)) Estimate for A2

Iapetus 7.4 × 105 m 1.1 × 103 kg m−3 4.0 × 109 Pa 200

Mars 3.4 × 106 m 3.9 × 103 kg m−3 1.0 × 1011 Pa 19

Earth 6.4 × 106 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 2.2

A hypothetical super-Earth
with R = 2 R⊕ and the 4.5 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.55
same rheology as Earth

A hypothetical super-Earth
with R = 4 R⊕ and the 9.0 × 108 m 5.5 × 103 kg m−3 0.8 × 1011 Pa 0.14
same rheology as Earth

Notes. The values of A
(static)
2 are calculated using Equation (58) and are rounded to the second figure.

6. TIDAL DISSIPATION VERSUS SEISMIC DISSIPATION IN THE ANELASTICITY-DOMINATED BAND

In this section, we shall address only the higher-frequency band of the spectrum, i.e., the range where anelasticity dominates
viscoelasticity and the Andrade model is applicable safely. Mind though that the Andrade model can also embrace the near-Maxwell
behavior, and thus can be applied to the low frequencies, provided we “tune” the dimensionless parameter ζ appropriately—see
Section 3.4 above.

6.1. Response of a Sample of Material

At frequencies higher than some threshold value χ0, dissipation in minerals is mainly due to anelasticity rather than to viscosity.15

Hence, at these frequencies ζ should be of order unity or smaller, as can be seen from Equation (33b). This entails two consequences.
First, the condition χ � 1/(ζ τM ), i.e., z � 1 is obeyed reliably, for which reason the first term dominates the denominator in
Equation (38). Second, either the condition z � 1 is stronger than z � ζ 1/(1−α) or the two conditions are about equivalent. Hence
the anelastic term dominates the numerator in Equation (38): z−α � z−1 ζ .

Altogether, over the said frequency range, Equation (38) simplifies to:

tan δ ≈ (χτA)−α sin
(α π

2

)
Γ(α + 1) = (χ ζ τM )−α sin

(α π

2

)
Γ(α + 1). (66)

15 For the solid Earth, this threshold is about 1 yr−1 (Karato & Spetzler 1990). Being temperature sensitive, the threshold may assume different values for other
terrestrial planets. Also mind that the transition is not sharp and can extend over a decade or more.
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Clearly, tan δ 	 1, wherefore tan δ ≈ sin δ ≈ δ. For the seismic quality factor, we then have:

(seismic)Q−1 ≈ (χ τA)−α sin
(α π

2

)
Γ(α + 1), (67)

no matter which of the three definitions (21)–(23) we accept. Be mindful that here we use the term seismic broadly, applying it also
to a sample in a lab.

6.2. Tidal Response of a Homogeneous Near-spherical Body

Recall that defect unpinning stays effective at frequencies above some threshold χ0, which is likely to be above or, at least not
much lower than, the inverse Maxwell time,16 e.g., for the solid Earth, χ0 ∼ 1 yr−1 while τM ∼ 500 yr. Over this frequency band,
the free parameter ζ may be of order unity or slightly less than that. (This parameter grows as the frequencies become short of χ0.)
Under these circumstances, in Equation (63) we have: ζz−1 	 z−α 	 1, whence Equation (63) becomes

tan εl ≈ Al

1 + Al

z−α sin
(απ

2

)
Γ(1 + α). (68)

In combination with Equation (66), this renders

tan εl = Al

1 + Al

tan δ. (69)

Had we defined the quality factors as cotangents, like in Equation (23), then we would have to conclude from Equation (69) that
the tidal and seismic quality factors coincide for small objects (with Al � 1) and differ very considerably for super-Earths (i.e., for
Al 	 1). Specifically, the so-defined quality factor Ql of a super-Earth would be larger than its seismic counterpart Q by a factor of
about A−1

l .
In reality, the quality factors should be used for illustrative purposes only because practical calculations involve the factor

|k̄l(χlmpq)| sin εl(χlmpq ) rendered by Equation (65). It is this factor which enters the lmpq term of the Fourier expansion of tides.
Insertion of Equations (36) and (37) into Equation (65) furnishes the following expression valid in the anelasticity-dominated band:

|k̄l(χlmpq)| sin εl(χlmpq ) ≈ 3

2 (l − 1)

Al

(Al + 1)2
sin

(απ

2

)
Γ(α + 1) ζ−α(τMχlmpq )−α sgn ωlmpq, for χlmpq � χHI,

(70)

χHI being the boundary between the high and intermediate frequencies, i.e., between the anelasticity-dominated band and the
transitional zone. Expression (70) resembles the frequency dependency for |J̄ (χ )| sin δ(χ ) = − Im[J̄ (χ )] at high frequencies (see
Equation 36). In Figure 2, dependency (70) corresponds to the slowly descending slope on the far right.

A detailed derivation of Equation (70) from formulae (36)–(37) and (65) is presented in the Appendix to Efroimsky (2012). For
terrestrial objects several times smaller than Earth (so Al � 1), the threshold turns out to be

χHI = τ−1
M ζ α/(1−α). (71)

For super-Earths (i.e., for Al 	 1), the threshold becomes

χHI = τ−1
A = τ−1

M ζ−1. (72)

Near the borderline between the anelasticity-dominated band and the transitional zone, the parameter ζ could be of order unity. It
may as well be lower than unity, though not by much (hardly by an order of magnitude), because too low a value of ζ would exclude
viscosity from the play completely. We, however, expect viscosity to be noticeable near the transitional zone.

Finally, it should be reiterated that at frequencies lower than some χ0 the defect-unpinning process becomes less effective, so
anelasticity becomes less effective than viscosity, and the free parameter ζ begins to grow. Hence, if the above estimates for χHI turn
out to be lower than χ0, we should set χHI = χ0 “by hand.”

7. TIDAL DISSIPATION VERSUS SEISMIC DISSIPATION IN THE VISCOSITY-DOMINATED BAND

When frequency χ becomes short of some χ0, the rate of anelastic dissipation caused by defect unpinning decreases and viscosity
begins to take over anelasticity.

If we simply assume the free parameter ζ to be of order unity everywhere, i.e., assume that the Maxwell and Andrade timescales
are everywhere comparable, then application of the Andrade model will set χ0 to be of order τ−1

M . Anelasticity will dominate at
frequencies above that threshold, while below it the role of viscosity will be higher. This approach, however, would be simplistic
because the actual location of the threshold should be derived from microphysics and may turn out to differ noticeably from τ−1

M . For

16 Dislocations may break away from the pinning agents (impurities, nodes, or jogs), or the pinning agents themselves may move along with dislocations. These two
processes are called “unpinning,” and they go easier at low frequencies, as the energy barriers become lower (Karato & Spetzler 1990, Section 5.2.3).
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example, in the terrestrial mantle the transition takes place at frequencies as high as 1 yr−1 (Karato & Spetzler 1990) and may be
spread over a decade or more into lower frequencies, as we shall see from Equation (73).

Another somewhat simplistic option would be to assume that ζ ∼ 1 at frequencies above χ0, and to set ζ = ∞ at frequencies
below χ0. The latter would be equivalent to claiming that below this threshold the mantle is described by the Maxwell model. In
reality, here we are just entering a transition zone, where ζ increases with the decrease of the frequency. While it is clear that in the
denominator of Equation (38) the first term dominates, the situation with the numerator is less certain. Only after the condition

ζ � (χτM )(1−α)/α ≈ (χτM )4 (73)

is obeyed, the viscous term 1/(χ τM ) becomes leading. This way, although ζ begins to grow as the frequency decreases below χ0, the
frequency may need to decrease by another decade or more before threshold (73) is reached.

7.1. Response of a Sample of Material

Accepting the approximation that the transition zone is narrow17 and that the predominantly viscous regime is already reached at
χ0 or shortly below, we approximate the tangent of the lag with

tan δ ≈ (χτM )−1, (74)

whence

sin δ ≈
⎧⎨
⎩

(χτM )−1 for τ−1
M 	 χ 	 χ0,

1 for 0 � χ 	 τ−1
M .

(75)

7.2. Tidal Response of a Homogeneous Near-spherical Body

When viscosity dominates anelasticity, expression (63) gets reduced to the following form:

tan εl ≈ Al

1 + Al + (ζ z−1)2
ζ z−1 = Al

1 + Al + (χ τM )− 2

1

χ τM

,

(76)

where comparison with Equation (74) renders

tan εl ≈ Al

1 + Al + (χ τM )−2 tan δ = Al

1 + Al + tan2 δ
tan δ. (77)

Now two special cases should be considered separately.

7.2.1. Small Bodies and Small Terrestrial Planets

As illustrated by Table 1, small bodies and small terrestrial planets have Al � 1. So formulae (76) and (77) take the form of

tan εl ≈

⎧⎪⎪⎨
⎪⎪⎩

1

χ τM

for
1

τM

√
Al + 1

	 χ 	 χ0,

Al χ τM for 0 � χ 	 1

τM

√
Al + 1

≈ 1

τM

√
Al

,

(78)

and

tan εl ≈

⎧⎪⎪⎨
⎪⎪⎩

Al

1 + Al

tan δ ≈ tan δ for
1

τM

√
Al + 1

	 χ 	 χ0,

Al

tan δ
for 0 � χ 	 1

τM

√
Al + 1

≈ 1

τM

√
Al

.

(79)

Had we defined the quality factors as cotangents of εl and δ, we would be faced with a situation that may at first glance appear
embarrassing: in the zero-frequency limit, the so-defined tidal Ql would become inversely proportional to the so-defined seismic Q
factor. This would, however, correspond well to an obvious physical fact: when the satellite crosses the lmpq commensurability, the
lmpq term of the average tidal torque acting on a satellite must smoothly pass through nil, together with the lmpq tidal mode. (For
example, the orbital average of the principal tidal torque lmpq = 2200 must vanish when the satellite crosses the synchronous orbit.)
For a more accurate explanation in terms of the |k̄l(χ )| sin εl(χ ) factors see Section 7.3 below.

17 For a broader transition zone, the rheology will approach that of Maxwell at lower frequencies. This, though, will not influence our main conclusions.
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7.2.2. Super-Earths

For super-Earths, we have Al 	 1, so Equation (77) becomes

tan εl ≈ Al χ τM = Al

tan δ
for 0 � χ 	 1

τM

√
Al + 1

≈ 1

τM

. (80)

Here we encounter the same apparent paradox: had we defined the quality factors as cotangents of εl and δ, we would end up with a
tidal Ql inversely proportional to its seismic counterpart Q. A qualitative explanation to this “paradox” is the same as in the subsection
above, a more accurate elucidation to be given shortly in Section 7.3.

Another seemingly strange feature is that in this case (i.e., for Al 	 1) the tangent of the tidal lag skips the range of inverse-
frequency behavior and becomes linear in the frequency right below the inverse Maxwell time. This, however, should not surprise
us because the physically meaningful products kl sin εl still retain a short range over which they demonstrate the inverse-frequency
behavior. This can be understood from Figure 2. There, on each plot, a short segment to the right of the maximum corresponds to the
situation when kl sin εl scales as inverse frequency—see formula (81) below.

Thus we once again see that the illustrative capacity of the quality factor is limited. To spare ourselves surprises and “paradoxes,”
we should always keep in mind that the actual calculations are based on the frequency dependence of |k̄l(χlmpq )| sin εl(χlmpq).

7.3. Tidal Response in Terms of |k̄l(χ )| sin εl(χ )

Combining Equations (36) and (37) with Equation (65), one can demonstrate that in the intermediate-frequency zone the tidal
factors scale as

|k̄l(χ )| sin εl(χ ) ≈ 3

2 (l − 1)

Al

(Al + 1)2
(τMχ )−1 , for τ−1

M � χ � τ−1
M (Al + 1)−1, (81)

which corresponds to the short segment on the right of the maximum on Figure 2.
From the same formulae (36)–(37) and (65), it ensues that the low-frequency behavior is

|k̄l(χ )| sin εl(χ ) ≈ 3

2 (l − 1)
Al τMχ, for τ−1

M (Al + 1)−1 � χ, (82)

a regime illustrated by the slope located on the left of the maximum on Figure 2.
Details of the derivation of Equations (81) and (82) can be found in the Appendix to Efroimsky (2012).
Just as expression (70) resembled the frequency dependency (36) for |J̄ (χ )| sin δ(χ ) at high frequencies, so Equation (81) resembles

the behavior of |J̄ (χ )| sin δ(χ ) at low frequencies. At the same time, Equation (82) demonstrates a feature inherent only in tides, and
not in the behavior of a sample of material: at χ < τ−1

M (Al + 1)−1 = (μ/η) × (Al + 1)−1, the factor |k̄l(χ )| sin εl(χ ) becomes linear in
χ . This is not surprising, as the lmpq component of the average tidal torque or force must pass smoothly through zero and change its
sign when the lmpq commensurability is crossed (and the lmpq tidal mode goes through zero and changes sign).

8. WHY THE lmpq COMPONENT OF THE TIDAL TORQUE DOES NOT SCALE AS R 2l+1

A Fourier componentTlmpq of the tidal torque acting on a perturbed primary is proportional to R 2l+1 kl sin εl , where R is the primary’s
mean equatorial radius. Neglect of the R-dependence of the tidal factors kl sin εl has long been a source of misunderstanding of how
the torque scales with the radius.

From formulae (70) and (81), we see that everywhere except in the closest vicinity of the resonance the tidal factors are proportional
to Al/(1+Al)2 where Al ∼ R−2 according to Equation (60). Hence the overall dependence of the tidal torque upon the radius becomes:

Over the frequency band χ � τ−1
M (1 + Al)−1 ,

Tlmpq ∼ R2l+1kl sin εl ∼ [(R2l+1 Al)/(1 + Al)
2] ∼

{
R2l−1, for Al 	 1 (super-Earths),

R2l+3, for Al � 1 (small bodies, small terrestrial planets).
(83)

In the closest vicinity of the lmpq commensurability, i.e., when the tidal frequency χlmpq approaches zero, the tidal factors behavior
is described by Equation (82). This furnishes a different scaling law for the torque, and the form of this law is the same for telluric
bodies of all sizes:

Over the frequency band χ 	 τ−1
M (1 + Al)−1 ,

Tlmpq ∼ R2l+1kl sin εl ∼ R2l+1 Al ∼ R2l−1. (84)

9. CONCLUSIONS AND EXAMPLES

Within the anelasticity-dominated band, the phase lags in a homogeneous near-spherical body and in a sample of material interrelate
as

tan εl = (Al/1 + Al)(tan δ) ≈
{

Al tan δ for Al 	 1 (super-Earths),

tan δ for Al � 1 (small bodies, small terrestrial planets).
(85)

However, within the transitional zone, the link between the seismic and tidal dissipation rates becomes more complicated.
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The interrelation between the tidal and seismic damping becomes apparently paradoxical at low frequencies, where viscosity
dominates. As can be seen from Equations (78)–(80), in the zero-frequency limit the tidal and seismic Qs (if defined as cotangents
of the appropriate lags) become inversely proportional to one another:

tan εl ≈ Al χ τM = Al

tan δ
for 0 � χ 	 1

τM

√
Al + 1

. (86)

This behavior, however, has a good qualitative explanation—the average tidal torque lmpq should vanish on crossing of the lmpq
resonance.

While in qualitative discussions it is easier to deal with the quality factors Ql, in practical calculations we should rely on the factors
kl sin εl , which show up in the Darwin–Kaula expansion of tides. Just as tan εl , so the quantity kl sin εl too becomes linear in χ for
low values of χ . As we saw in Section 7.3, this happens over frequencies below χ 	 1/(τM (Al + 1)). The slight difference between
this threshold and the one shown in Equation (86) stems from the fact that not only the lag but also the Love number is frequency
dependent.

The factors kl sin εl bear dependence upon the radius R of a tidally disturbed primary, and the form of this dependence is not always
trivial. At low frequencies, this dependence follows the intuitively obvious rule that the heavier the body the stronger it mitigates
tides (and thence the smaller the value of kl sin εl). However, at high frequencies the calculated frequency dependence obeys this rule
only beginning from sizes about double or larger than the size of the Earth, i.e., when self-gravitation clearly plays a larger role in
tidal friction than the rheology does—see the discussion at the end of Section 5.4.

The dependence of kl sin εl upon R helps one to write down the overall R-dependence of the tidal torque. Contrary to the common
belief, the lmpq component of the torque does not scale as R2l+1; see formulae (83) and (84).

Here follow some examples illustrating how our machinery applies to various celestial bodies.

1. For small bodies and small terrestrial planets, the effect of self-gravitation is negligible, except in the closest vicinity of the zero
frequency. Accordingly, for these bodies there is no difference between the tidal and seismic dissipations.18

Things change in the closest vicinity of the zero frequency. As can be observed from the second line of Equation (78), for
small bodies and small planets the tangent of the tidal lag becomes linear in the tidal frequency χ when the frequency χ
becomes short of a certain threshold:19 χ 	 1/(τM

√
Al + 1 ) ≈ 1/(τM

√
Al). As can be seen from Equation (82), the tidal factor

kl sin εl ≡ |k̄l(χ )| sin εl(χ ) becomes linear in χ for χ 	 τ−1
M (Al + 1)−1 ≈ τ−1

M A−1
l .

2. Tidal dissipation in super-Earths is much less efficient than in smaller terrestrial planets or moons—a circumstance that should
reduce considerably the rates of orbit circularization. This cautionary point has ramifications also upon the other tidal-dynamic
timescales (e.g., despinning, migration).

In simple words, self-gravity reduces tidal dissipation because gravitational attraction pulls the tidal bulge back down, and
thus reduces strain in a way similar to material strength.

As can be seen from Equation (80), at tidal frequencies χ lower than the inverse Maxwell time,20 the tangent of the tidal
lag changes its behavior considerably, thereby avoiding divergence at the zero frequency. According to Equation (82), the same
pertains to the factor kl sin εl .

3. While the role of self-gravity is negligible for small planets and is dominant for super-Earths, the case of Earth is intermediate.
For our mother planet, the contribution of self-gravitation into the Love numbers and phase lags is noticeable, though probably
not leading. Indeed, for μ ≈ 0.8 × 1011 Pa, one arrives at:

A2 ≈ 2.2, (87)

so formula (69) tells us that Earth’s tidal quality factor is a bit larger than its seismic counterpart, taken at the same
frequency:21

(tidal)Q
(solid Earth)
2 ≈ 1.5 × (seismic)Q(solid Earth)

. (88)

The geodetic measurements of semidiurnal tides, carried out by Ray et al. (2001), yield (tidal)Q
(solid Earth)
2 ≈ 280. The seismic

quality factor (seismic)Q(solid Earth) varies over the mantle, assuming values from 100 through 300. Accepting 200 for an arguable
average, we see that Equation (88) furnishes a satisfactory qualitative estimate.

18 This can be understood also through the following line of reasoning. For small objects, we have Al � 1; so the complex Love numbers (59b) may be
approximated with

k̄l(χ ) =− 3

2
J (χ )

J (χ ) + Al J
=− 3

2
J (χ )

Al J
+ O(|J/(Al J )|2).

The latter entails

tan εl(χ ) ≡ −Im[k̄l(χ )]

Re[k̄l(χ )]
≈ −Im[J̄ (χ )]

Re[J̄ (χ )]
= tan δ(χ ),

which is, in fact, correct up to a sign—see the closing paragraph of Section 5.1.
19 Recall that for small objects Al � 1.
20 For super-Earths, Al 	 1.
21 When Benjamin et al. (2006) say that, according to their data, the tidal quality factor is slightly lower than the seismic one, these authors compare the two Q
factors measured at different frequencies. Hence their statement does not contradict our conclusions.
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This close hit should not of course be accepted too literally, taken Earth’s complex structure and the uncertainty in our
knowledge of Earth’s rigidity. Still, on a qualitative level, we may enjoy this proximity with cautious optimism.

4. The case of the Moon deserves a special attention. Fitting of the LLR data to the power scaling law Q ∼ χp has rendered a small
negative value of the exponential: p = −0.19 (Williams et al. 2001). Further attempts by the JPL team to reprocess the data have
led to p = −0.07. According to Williams & Boggs (2008, pp. 110–111), “There is a weak dependence of tidal specific dissipation
Q on period. The Q increases from ∼30 at a month to ∼35 at one year. Q for rock is expected to have a weak dependence on tidal
period, but it is expected to decrease with period rather than increase. The frequency dependence of Q deserves further attention
and should be improved.”

To understand the origin of the small negative value of the power, recall that it emerged through fitting of the tidal Q2 and not
of the seismic Q. If future laser ranging confirms these data, this will mean that the principal tide in the Moon is located close
to the maximum of the inverse tidal quality factor, i.e., close to the maximum taken by tan ε2 in Equation (78) at the frequency
inverse to τM

√
Al . Rigorously speaking, it was of course the factor k2 sin ε2 which was actually observed. The maximum of this

factor is attained at the frequency τ−1
M (Al + 1)−1, as can be seen from Equations (81) to (82). It then follows from the LLR data

that the corresponding timescale τM (Al + 1) should be of order 0.1 year. As explained in Efroimsky (2012), this would set the
mean viscosity of the Moon as low as

ηMoon = 3 × 1016 Pa s, (89)

which in its turn would imply a very high concentration of the partial melt in the low mantle—quite in accordance with the
existing models (Nakamura et al. 1974; Weber et al. 2011).

The future LLR programs may be instrumental in resolving this difficult issue. The value of the exponential p will have
ramifications for the current models of the lunar mantle.

10. COMPARISON OF OUR RESULT WITH THAT OF GOLDREICH (1963)

A formula coinciding with our Equation (69) was obtained, through remarkably economic and elegant semi-qualitative reasoning,
by Peter Goldreich (1963).

The starting point in that paper was the observation that the peak work performed by the second-harmonic disturbing potential
should be proportional to this potential taken at the primary’s surface, multiplied by the maximal surface inequality:

Epeak ∼ R5 R

1 + 19 μ/(2 g ρ R)
∼ R7

19 μ + 2 g ρ R
, (90)

R being the primary’s radius.
In the static theory of Love, the surface strain is proportional to R2/ ( 19 μ + 2 g ρ R ). The energy loss over a cycle must be

proportional to the square of the surface strain. Integration over the volume will give an extra multiplier of R3, up to a numerical
factor:

ΔEcycle ∼ − R7

(19 μ + 2 g ρ R)2 . (91)

Comparison of Equations (90) and (91) rendered

Q = −2πEpeak

ΔEcycle
∼ (19 μ + 2 g ρ R) ,

wherefrom Goldreich (1963) deduced that

Q

Q0
= 1 +

2 g ρ R

19 μ
,

Q0 being the value of Q for a body where self-gravitation is negligible. This coincides with our formula (69).
In reality, the coincidence of our results is only partial for two reasons.

1. First, our derivation of the right-hand side of (63) was based on the prior convention that the quantity J entering expression (60)
is the unrelaxed compliance J (0) of the mantle. Accordingly, the quantity μ = 1/J entering the expression for Al should be the
unrelaxed rigidity μ(0) = 1/J (0). In Goldreich (1963), however, the static, i.e., relaxed, moduli were implied.

In Goldreich (1963), this mismatch was tolerable because the paper was devoted to small bodies. For these objects, Al is large,
no matter whether we plug the relaxed or unrelaxed μ into Equation (56). Thence the difference between the tidal and seismic Q
factors is small, as can be seen from the second line of Equation (85).

For Earths and super-Earths, however, the distinction between the unrelaxed and relaxed (static) moduli is critical. As can be
seen from the first line of Equation (85), the tidal Q factor is inversely proportional to Al and, thereby, is inversely proportional
to the mantle rigidity μ. As well known (e.g., Ricard et al. 2009, Figure 3), the unrelaxed μ of the mantle exceeds the relaxed μ
by about two orders of magnitude.
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2. Second, as our calculation demonstrates, the simple interrelation given by Equations (69) and (85) works only in the anelasticity-
dominated band. In the transition zone (which begins, in the solid Earth, at timescales longer than ∼1 yr) and in the viscosity-
dominated band of lower frequencies, the interrelation between the tidal and seismic lagging is more complicated, and it deviates
from Goldreich’s formula in a fundamental way. In the zero-frequency limit the cleavage between the tidal and seismic dissipation
laws gets especially large: the tidal and seismic Qs become not proportional but inversely proportional to one another. Description
of tidal lagging in all these low-frequency bands requires a rheological model and the subsequent mathematics, and cannot be
obtained through the simple arguments used by Goldreich (1963).

Despite these differences, the estimate by Goldreich (1963) provided as close a hit as was possible without resorting to heavy
mathematics. The elegance of Peter Goldreich’s arguments and the depth of his insight are especially impressive, taken the complexity
of the problem and the volume of calculations required to obtain the exact answer.

To a large extent, my understanding of the theory of bodily tides was developed through the enlightening conversations which I
had on numerous occasions with Bruce Bills, Julie Castillo-Rogez, Véronique Dehant, Sylvio Ferraz-Mello, Valéry Lainey, Valeri
Makarov, Francis Nimmo, Stan Peale, Tim Van Hoolst, and James G. Williams. It is a great pleasure for me to thank deeply all these
colleagues for their time and advice. Needless to say, none of them shares the responsibility for my possible omissions.

I also wish to pay tribute to the late Vladimir Churkin, whose tragic death prevented him from publishing his preprint cited in this
paper. Written with a great pedagogical mastership, the preprint helped me to understand how the Love-number formalism should be
combined with rheology.

My special gratitude is due to Shun-ichiro Karato for the help he so kindly provided to me when I was just opening for myself this
intriguing area, and for the stimulating exchanges which we have had for years since then.

Last, and by no means least, I sincerely appreciate the support from my colleagues at the U.S. Naval Observatory, especially John
Bangert.

APPENDIX

Table 2
Symbol Key

Symbol Definition

Al Dimensionless product emerging in the denominator of the expression for the Love number kl

E Energy
E Empirical constant having the dimensions of time, in the generic rheological law (27)
g Surface gravity
G Newton’s gravitational constant
l Degree (spherical harmonics, Legendre polynomials)
m Order (spherical harmonics, associated Legendre polynomials)
J, J (0) Unrelaxed compliance
J (∞) Relaxed compliance
J (t − t ′) Creep-response function (compliance function, kernel of the compliance operator)
Ĵ Compliance operator
kl Tidal Love number of degree l
kl(t − t ′) Kernel of the Love operator of degree l
k̂l Love operator of degree l
k̄l(χ ) Fourier component, at frequency χ , of the time derivative of the kernel kl(t − t ′)
M Mean anomaly
n Mean motion
p Exponential in the generic rheological law (27)
Pl Legendre polynomials of degree l
Plm Legendre associated functions (associated Legendre polynomials) of degree l and order m
Q Dissipation quality factor
r Distance
r Vector connecting the center of the tidally perturbed body (interpreted as the primary) with a point exterior to this body
r∗ Vector connecting the center of the tidally perturbed body (the primary) with a point-like tide-raising secondary
R Primary’s mean radius
t Time
uγν Shear strain tensor
ūγ ν (χ ) Fourier component, at frequency χ , of the shear strain tensor
U Change in the potential of the tidally perturbed body (interpreted as the primary)
W Disturbing potential generated by the tide-raising body (interpreted as the secondary)
α, β Parameters of the Andrade model
γ, ν Tensor indices
Γ Gamma function
δ Material phase lag
Δt Time lag
ε Tidal phase lag
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Table 2
(Continued)

Symbol Definition

εlmpq Tidal phase lag of the mode lmpq in the Darwin–Kaula expansion
λ Longitude
ζ Parameter of the reformulated Andrade model (ratio of the anelastic timescale τA to the Maxwell time τM )
η Viscosity
μ, μ(0) Unrelaxed shear modulus (unrelaxed rigidity)
μ(∞) Relaxed shear modulus (relaxed rigidity)
μ(t − t ′) Stress-relaxation function (kernel of the rigidity operator)
μ̂ Rigidity operator
φ Latitude
ρ Mass density
σγν Shear stress tensor
σ̄γ ν (χ ) Fourier component, at frequency χ , of the shear stress tensor
τ Time
τM Maxwell time (viscoelastic timescale)
τA Andrade time (anelastic timescale)
T Tidal torque
Θ(t − t ′) Heaviside function
θ Sidereal angle of the tidally disturbed body (interpreted as the primary)�
θ Spin rate of the primary
ϕσ , ϕu Initial phases of the stress and strain
χ Frequency
χ0 Frequency threshold marking the boundary between the anelasticity- and viscosity-dominated frequency bands
χlmpq Physical frequencies of deformation emerging in the tidal theory (absolute values of the tidal modes ωlmpq)
ωlmpq Tidal modes in the Darwin–Kaula expansion of tides
ω Argument of the pericenter
Ω Longitude of the node
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